Monte Carlo study on the imaging performance of powder Lu2SiO5:Ce phosphor screens under x-ray excitation: comparison with Gd2O2S:Tb screens.
نویسندگان
چکیده
Lu2SiO5: Ce (LSO) scintillator is a relatively new luminescent material which has been successfully applied in positron emission tomography systems. Since it has been recently commercially available in powder form, it could be of value to investigate its performance for use in x-ray projection imaging as both physical and scintillating properties indicate a promising material for such applications. In the present study, a custom and validated Monte Carlo simulation code was used in order to examine the performance of LSO, under diagnostic radiology (mammography and general radiography) conditions. The Monte Carlo code was based on a model using Mie scattering theory for the description of light attenuation. Imaging characteristics, related to image brightness, spatial resolution and noise of LSO screens were predicted using only physical parameters of the phosphor. The overall performance of LSO powder phosphor screens was investigated in terms of the: (i) quantum detection efficiency (ii) emitted K-characteristic radiation (iii) luminescence efficiency (iv) modulation transfer function (v) Swank factor and (vi) zero-frequency detective quantum efficiency [DQE(0)]. Results were compared to the traditional rare-earth Gd2O2S:Tb (GOS) phosphor material. The relative luminescence efficiency of LSO phosphor was found inferior to that of GOS. This is due to the lower intrinsic conversion efficiency of LSO (0.08 instead of 0.15 of GOS) and the relatively high light extinction coefficient mext of this phosphor (0.239 mircom(-1) instead of 0.218 /microm(-1) for GOS). However, the property of increased light extinction combined with the rather sharp angular distribution of scattered light photons (anisotropy factor g=0.624 for LSO instead of 0.494 for GOS) reduce lateral light spreading and improve spatial resolution. In addition, LSO screens were found to exhibit better x-ray absorption as well as higher signal to noise transfer properties in the energy range from 18 keV up to 50.2 keV (e.g. DQE(0)=0.62 at 18 keV and for 34 mg/cm2, instead of 0.58 for GOS). The results indicate that certain optical properties of LSO (optical extinction coefficient, scattering anisotropy factor) combined with the relatively high x-ray coefficients, make this material a promising phosphor which, under appropriate conditions, could be considered for use in x-ray projection imaging detectors.
منابع مشابه
Modeling granular phosphor screens by Monte Carlo methods.
The intrinsic phosphor properties are of significant importance for the performance of phosphor screens used in medical imaging systems. In previous analytical-theoretical and Monte Carlo studies on granular phosphor materials, values of optical properties, and light interaction cross sections were found by fitting to experimental data. These values were then employed for the assessment of phos...
متن کاملPii: S0720-048x(98)00109-0
Objecti6e: The performance of medical X-ray image receptors depends: (1) on the scintillator light emission efficiency; and (2) on the compatibility of the scintillator light spectrum with the spectral sensitivity of the light detector (film, photocathode, or photodiode), employed in conjunction with the scintillator. In this study, a scintillator performance measure, the effective fidelity ind...
متن کاملOptical photon transport in powdered-phosphor scintillators. Part 1. Multiple-scattering and validity of the Boltzmann transport equation.
PURPOSE In Part 1 of this two-part work, predictions for light transport in powdered-phosphor screens are made, based on three distinct approaches. Predictions of geometrical optics-based ray tracing through an explicit microscopic model (EMM) for screen structure are compared to a Monte Carlo program based on the Boltzmann transport equation (BTE) and Swank's diffusion equation solution. The p...
متن کاملSynthesis and characterization of Gd2O2 S: Tb3+ phosphor powder for X-ray imaging detectors
Gadolinium oxysulfide phosphor doped with trivalent terbium have been synthesized using urea homogenous precipitation and followed by sulfurization at 800 °C under argon atmosphere. Structural and morphological of synthesized phosphor powder were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Hexagonal structure ...
متن کاملFeasibility of Active Sandwich Detectors for Single-Shot Dual-Energy Imaging∗
We revisit the doubly-layered sandwich detector con guration for single-shot dual-energy x-ray imaging. In order to understand its proper operation, we investigated the contrast-to-noise performance in terms of the x-ray beam setup using the Monte Carlo methods. Using a pair of active photodiode arrays coupled to phosphor screens, we have built a sandwich detector. For better spectral separatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 34 5 شماره
صفحات -
تاریخ انتشار 2007